# A Regularized Vector Autoregressive Hidden Semi-Markov Model

with application to Multivariate Financial Data

### Zekun Xu & Ye Liu

# Statistics Department, North Carolina State University

#### Abstract

We provide a flexible  $p^{th}$  order vector autoregressive hidden semi-Markov model (VAR(p)-HSMM) framework to analyze multivariate financial time series with switching data generating regimes. Furthermore, we enhance the EM algorithm to stabilize the parameter estimation by embedding regularized estimators for the state-dependent covariance matrices and autoregression matrices in the M-step. Simulation studies are carried out to evaluate the performance of our proposed regularized estimators. In addition, we demonstrate the use of a regularized VAR(p)-HSMM to model the real NYSE financial portfolio data.

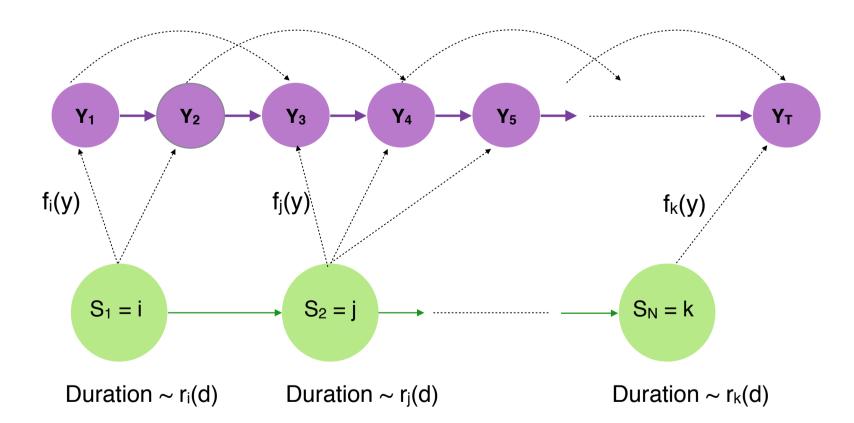
#### Introduction

In finance and economics, time series often have more than one latent data generating mechanisms. For example, it is reasonable to assume the performance of a financial portfolio during a bull market to follow a very different autoregressive process from that during a bear market. As a result, the class of hidden Markov models (HMM) arise as a natural solution to analyze time series with switching data generating regimes. HMM is a bivariate discrete time stochastic process  $\{S_t, Y_t\}_{t>0}$  such that

1.  $\{S_t\}$  is a Markov chain, i.e.  $P(S_t|S_{t-1},...,S_1) = P(S_t|S_{t-1})$ 

2.  $\{Y_t\}$  are conditionally independent given  $\{S_t\}$ 

In practice, the 2 assumptions are both too strong to hold for financial time series. To generalize assumption 1, the class of hidden semi-Markov models (HSMM) allows for explicitly modelling the time duration of the hidden states rather than assume a memoryless geometric distribution. In the meantime, assumption 2 can be dropped in the class of Markov-switching models, which incorporates state-dependent Gaussian autoregressive processes, also known as autoregressive hidden Markov models (ARHMM) For general applicability, we are going to adopt the most flexible framework of a  $p^{th}$  order vector autoregressive hidden semi-Markov model (VAR(p)-HSMM) to analyze multivariate financial time series.



A potential problem of VAR(p)-HSMM is the large number of parameters to be estimated when the dimension of  $Y_t$  is high. A multivariate M-state VAR(p)-HSMM series of dimension n has  $\frac{Mn(n+1)}{2}$  parameters in the state-dependent covariance matrices and  $Mpn^2$  parameters in the autoregression matrices. Unless the time series is extremely long, we are not able to reliably estimate the covariance and autoregression matrices even when the dimension n is moderate. Therefore, regularizations are needed to stabilize the parameter estimation.

In this project, we provide a detailed parameter estimation procedure for a regularized VAR(p)-HSMM, where we integrated the elastic net regularization on the autoregression matrices and shrinkage regularization on the covariance matrices into the EM algorithm for parameter estimation. Our R package "rarhsmm" has been developed for fitting regularized VAR(p)-HSMM, which is available at https://cran.r-project.org/web/packages/rarhsmm/index.html

#### Methodology

#### Modelling framework for VAR(p)-HSMM

- $\bullet$  Let M be the number of latent states.
- An initial state,  $S_1 = i (i \in 1, ..., M)$  is chosen according to the initial state distribution  $\delta_i$ .
- A duration  $d_1$  is chosen according to the nonparametric state duration density  $r_i(d_1)$ , which is censored at a maximum duration D.
- Observations  $y_1, ..., y_{d1} \in \mathbb{R}^n$  are chosen according to the state-dependent  $p^{th}$  order Gaussian vector autoregressive process

$$\mathbf{y}_t = \mu(S_t) + \sum_{k=1}^p \mathbf{A}_k(S_t)\mathbf{y}_{t-k} + \mathbf{\Sigma}(S_t)$$
  $t = 1, ..., d_1$ 

where  $\mu(S_t)$ ,  $\Sigma(S_t)$ , and  $A_k(S_t)$  are the conditional mean, covariance matrix, and  $k^{th}$ -order autoregression matrices conditioning on  $S_t$ .

• The next state,  $S_2 = j$ , is chosen according to the state transition probabilities,  $q_{ij}$ 

#### Parameter estimation: a modified EM algorithm

In the E-step of the  $l^{th}$  iteration, we define and compute

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(l)}) = E_{\boldsymbol{\theta}^{(l)}} \{ \log[P_{\boldsymbol{\theta}}(Y_1, ..., Y_T, S_1, ..., S_T)] | y_1, ..., y_n \}$$

In the M-step, except for the covariance matrices  $\Sigma_j$  and autoregression matrices  $\mathbf{A}_j$  for j=1,...,M, we update all the other parameters by maximizing  $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(l)})$ .

The regularized estimator for state-dependent covariance matrices is a convex combination of the maximum likelihood estimator and a scaled identity matrix with the same trace

$$\mathbf{\Sigma}^{r} = \frac{1}{1 + \lambda_{\Sigma}} \hat{\mathbf{\Sigma}}^{mle} + \frac{\lambda_{\Sigma}}{1 + \lambda_{\Sigma}} c\mathbf{I} \quad s.t \quad \operatorname{tr}(\hat{\mathbf{\Sigma}}^{mle}) = \operatorname{tr}(c\mathbf{I})$$

where  $\lambda_{\Sigma} \geq 0$  controls the strength of the regularization. Note that when  $\lambda_{\Sigma} = 0$ , we have  $\Sigma^r = \hat{\Sigma}^{mle}$ . This regularized estimator yields an invertible and well-conditioned covariance matrix when the sample covariance matrix is close to singularity. This regularization has a Bayesian analogy where  $\Sigma^r$  can be considered as the combination of prior information (centered around  $\hat{\Sigma}^{mle}$ ).

The regularized estimator for state-dependent autoregressive coefficients is based on the elastic net regularization such that

$$\mathbf{a}^{r} = \underset{\mathbf{a}}{\arg\min} \| \operatorname{vec}(Y_{p+1:T}) - \mu + \sum_{k=1}^{p} \mathbf{a}_{k}^{\mathsf{T}} \operatorname{vec}(Y_{p+1-k:T-k}) \|_{2}^{2} + \lambda_{a} [\alpha \|\mathbf{a}\|_{1} + (1-\alpha)\|\mathbf{a}\|_{2}^{2}]$$

where  $\mathbf{a} = [\mathbf{a}_p^\mathsf{T}, ..., \mathbf{a}_1^\mathsf{T}]^\mathsf{T} = [\operatorname{vec}(\mathbf{A}_p)^\mathsf{T}, ..., \operatorname{vec}(\mathbf{A}_1)^\mathsf{T}]^\mathsf{T}$  is the vectorization of the state-dependent autoregression matrices. Here  $\lambda_a \geq 0$  controls the strength of the regularization, while  $\alpha$  adjusts for the mixing weight of  $\ell_1$  and  $\ell_2$  penalty. The elastic net regularization is an improvement on LASSO in that it enables strongly correlated predictors to stay in or drop out of the model together. A coordinate descent algorithm is used to solve the convex optimization problem of elastic net shrinkage.

#### **Simulation Results**

In order to evaluate the performance of our regularized estimator on the state-dependent autoregressive coefficients and covariance matrices, we simulated VAR(1)-HSMM series of length 500 with 2 latent states under the following scenarios:

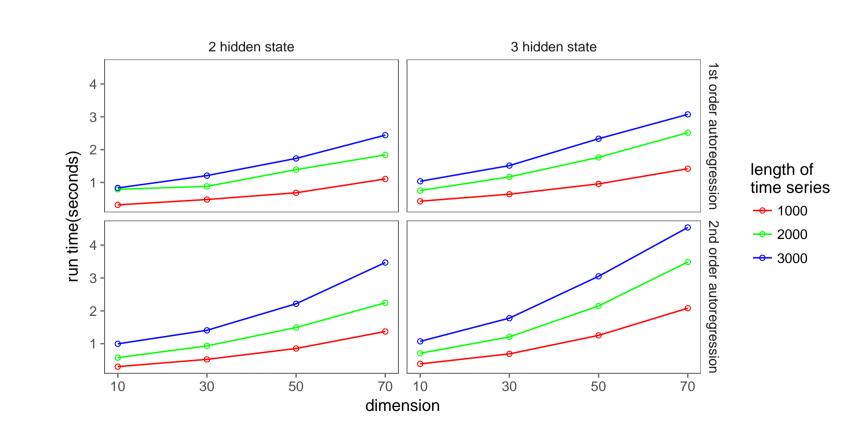
- 1. Dimension = 10; sparse covariance and autoregression matrices
- 2. Dimension = 10; dense covariance and autoregression matrices
- 3. Dimension = 50; sparse covariance and autoregression matrices
- 4. Dimension = 50; dense covariance and autoregression matrices

The two competing models are as follows:

- 1. Model 1 (not regularized):  $\lambda_a = \lambda_{\Sigma} = 0$
- 2. Model 2 (regularized):  $\lambda_a = \lambda_{\Sigma} = 1, \quad \alpha = 0.8$

| Parameter                                                   | <b>Sparse Matrices</b> |         | <b>Dense Matrices</b> |         |
|-------------------------------------------------------------|------------------------|---------|-----------------------|---------|
|                                                             | Model 1                | Model 2 | Model 1               | Model 2 |
| Dimension = 10                                              |                        |         |                       |         |
| $\ \mathbf{A}_1^{\star} - \hat{\mathbf{A}_1}\ _F$           | 0.78                   | 0.28    | 0.80                  | 1.17    |
| $\ \mathbf{A}_2^{\star} - \hat{\mathbf{A}}_2\ _F$           | 0.99                   | 0.24    | 0.97                  | 1.11    |
| $\ \mathbf{\Sigma}_1^{\star} - \hat{\mathbf{\Sigma}_1}\ _F$ | 0.82                   | 0.57    | 0.85                  | 1.30    |
| $\ \mathbf{\Sigma}_2^{\star} - \hat{\mathbf{\Sigma}_2}\ _F$ | 0.83                   | 0.47    | 0.85                  | 0.69    |
| Dimension = 50                                              |                        |         |                       |         |
| $\ \mathbf{A}_1^{\star} - \hat{\mathbf{A}_1}\ _F$           | 3.35                   | 1.27    | 3.56                  | 3.61    |
| $\ \mathbf{A}_2^{\star} - \hat{\mathbf{A}}_2\ _F$           | 7.01                   | 1.30    | 4.42                  | 3.95    |
| $\ \mathbf{\Sigma}_1^{\star} - \hat{\mathbf{\Sigma}_1}\ _F$ | 3.05                   | 1.97    | 5.13                  | 4.62    |
| $\ \mathbf{\Sigma}_2^\star - \hat{\mathbf{\Sigma}_2}\ _F$   | 3.05                   | 2.12    | 5.13                  | 5.38    |

**Table 1:** Mean difference in Frobenius norm between the true values and estimates via 1000 simulations. Standard Error is in the range of (0.01,0.1). Model 2 is uniformly better than model 1 in the case of sparse covariance and autoregression matrices, which is an ideal situation for regularized estimators.

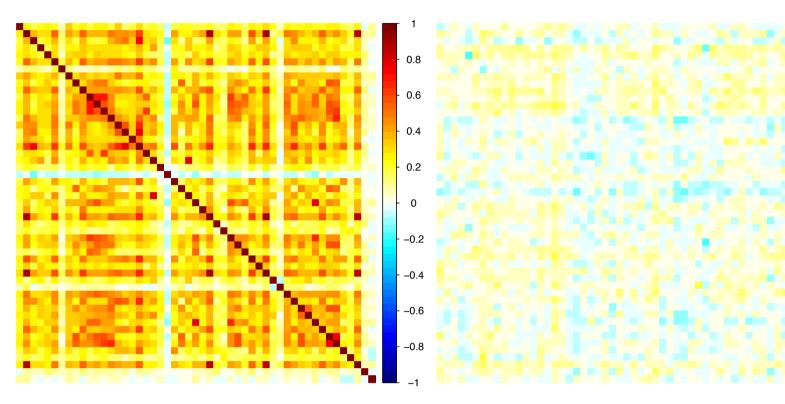


**Figure 1:** average running time of a single EM update in the regularized estimation algorithm in different problem sizes on a 2.7 GHz Intel Core i5 processor.

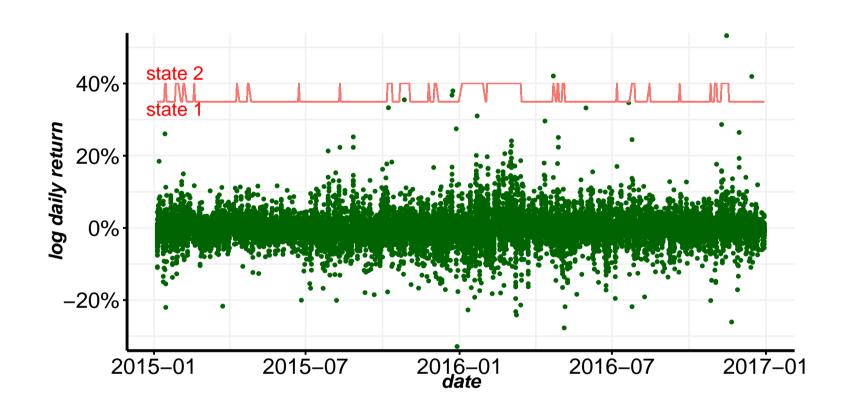
## **Empirical Result**

The financial portfolio data consists of the log daily return of 50 NYSE stocks from 2015-01-02 to 2016-12-30 so that each time series is of length 503. Using the minimum AIC criterion for model selection, our final model is a 2-state VAR(1)-HSMM.

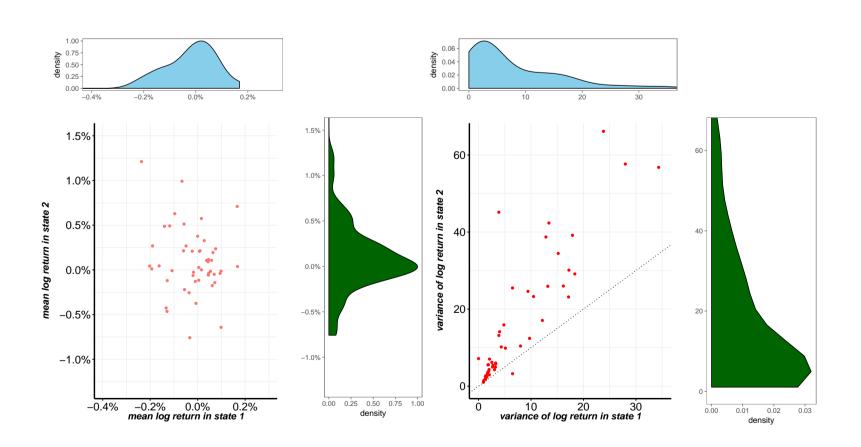




**Figure 2:** The left panel shows there is a fairly strong positive correlation in most of the lag 0 log returns among the 50 stocks. In contrast, the right panel displays the lag 1 autocorrelation matrix, which is rather sparse. A sparse autocorrelation justifies the use of regularized estimators.



**Figure 3:** The scatter plot depicts the log returns of the 50 stocks from 2015-01-02 to 2016-12-30. A sequence of the 2 decoded latent states is overlaid on top of the scatter plot. We can see that state 2 corresponds to the period with a higher volatility.



**Figure 4:** The left panel shows the mean log returns of the 50 stocks in state 2 versus those in state 1. Although the means in both states are centered around 0, the spread in means of state 2 is much larger than that in state 1. The right panel displays the variances in the log returns of the 50 stocks in state 2 versus state 1. Since the majority of the points lie above the 45 degree line, it seems that the variance in state 2 is greater than that in state one for most of the stocks.

#### **Conclusions**

- VAR(p)-HSMM provides a flexible framework to model the switching data generating regimes in multivariate financial time series data.
- A regularized VAR(p)-HSMM can yield stable estimates for the statedependent covariance and autoregression matrices. The regularized estimators work especially well when these matrices are indeed sparse.